

Shaocheng Yan¹, Yiming Wang², Kaiyan Zhao¹, Pengcheng Shi¹, Zhenjun Zhao³ , Yongjun Zhang¹ , Jiayuan Li^{1†} ¹Wuhan University, ²University of Macau, ³The Chinese University of Hong Kong

Background

Task: Minimal Set Sampling for Robust Point Cloud Registration (PCR).

Challenge: While correspondence-based PCR has achieved promising results under supervision, unsupervised rigid transformation estimation remains a significant challenge due to the absence of ground-truth alignment for learning.

through iterative actions and reward feedback.

HeMoRa: Unsupervised Heuristic Consensus Sampling for **Robust Point Cloud Registration**

Methodology

HeMoRa: an unsupervised training framework for robust estimation.

Three intuitive steps - ESO **Exploration:** HeGen explores a total of Q subsets. (i) Experiences from Q rounds of exploration. (iii) Optimization: The aggregated potential energy is used to guide the learning of sampling probabilities and features.

Efficient Pol

$$\frac{\partial}{\partial \Theta} \mathbb{E}_{q \sim \hat{\mathbf{P}}^{q}}[R^{q}] \approx \frac{\partial}{\partial \Theta} \underbrace{\sum_{i=1}^{N} \ln(\mathbf{P}_{i})}_{(i)} \cdot \underbrace{\frac{1}{Q} \sum_{q=1}^{Q} \mathbb{I}_{i}^{q} \cdot R^{q}}_{(i)},$$

TERM (i) backpropagates the gradient. TERM (ii) Integrates the feedback (reward) among Q samples.

$$\mathbb{I}_i^q = \mathbf{1}[r(\boldsymbol{c}_i, h^q) \leq \tau],$$

Consistency-aware Reward Propagation

$$\mathbf{E}_i = \max_q (\mathbb{I}_i^q \cdot R^q)$$

Max-pooling-based Reward Aggregator

baselines.

	Mathada	Unsup-		FPFH			FCGF	1
	Methods	ervised	RR(%)	RE(°)	TE(cm)	RR(%)	RE(°)	TE(cm)
Traditional	TEASER++ [54]	-	75.48	2.48	7.31	85.77	2.73	8.66
	GC-RANSAC [5]	-	67.65	2.33	6.87	92.05	2.33	7.11
	RANSAC-1M [18]	-	64.20	4.05	11.35	88.42	3.05	9.42
	RANSAC-2M [18]	-	65.25	4.07	11.56	90.88	2.71	8.31
	RANSAC-4M [18]	-	66.10	3.95	11.03	91.44	2.69	8.38
	CG-SAC [43]	-	78.00	2.40	6.89	87.52	2.42	7.66
	SC ² -PCR [10]	-	<u>83.73</u>	2.18	6.76	93.28	2.08	6.55
	MAC [66]	-	83.92	2.11	6.80	92.79	2.18	6.89
Learning	3DRegNet [39]	X	26.31	3.75	9.60	77.76	2.74	8.13
	DGR [13]	X	32.84	2.45	7.53	88.85	2.28	7.02
	DHVR [29]	×	67.10	2.78	7.84	91.93	2.25	7.08
	OHVR-Origin [29]	×	80.22	2.06	6.87	91.40	2.08	6.61
	PointDSC [4]	×	77.57	2.03	6.38	92.85	2.08	6.51
	VBReg [25]	X	82.75	2.14	6.77	93.10	2.33	6.68
Ours	Ours+PSAC	1	72.21	4.32	7.77	92.79	4.22	6.12
	Ours+SM	1	81.39	2.01	6.48	<u>93.41</u>	<u>2.10</u>	6.07
	Ours+SC ²	1	83.92	2.56	6.53	93.65	<u>2.10</u>	6.53

Results

Qualitative comparison on KITTI-20m.

Results on 3DMatch: achieves competitive or superior performance compared to supervised