GlobustVP: Convex Relaxation for Robust Vanishing Point Estimation in Manhattan World
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* Introducing convex relaxation to reformulate the intermediate QCQP form
of the primal problem as a convex SDP problem.

* An iterative solver, GlobustVP, that solves each VP subproblem
independently (corresponding to a sub-block of the full SDP problem),
achieving global optimality under mild conditions.

» Extensive evaluations on both synthetic and real data demonstrate that
our method achieves superior accuracy and robustness, while being on
par with prior methods in terms of efficiency.
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