

• An iterative solver, GlobustVP, that solves each VP subproblem independently (corresponding to a sub-block of the full SDP problem), achieving global optimality under mild conditions.

• Extensive evaluations on both synthetic and real data demonstrate that our method achieves superior accuracy and robustness, while being on par with prior methods in terms of efficiency.

GlobustVP: Convex Relaxation for Robust Vanishing Point Estimation in Manhattan World Bangyan Liao^{1,2*}, Zhenjun Zhao^{3*}, Haoang Li⁴, Yi Zhou⁵, Yingping Zeng⁵, Hao Li¹, Peidong Liu¹

min trace(\mathbf{CW}) s.t. $\mathbf{W}_{0,0,1} = \sum \text{trace}(\mathbf{W}_{0,j,i}), \quad j = 1, ..., m,$ $\mathbf{W}_{0,j,i} = \mathbf{W}_{j,j,i}, \quad \forall i \in \{1, 2\}, \quad j = 1, \dots, m,$ trace $(\mathbf{W}_{0,0,1}) = 1$, $\mathbf{W}_{0,0,1} = \mathbf{W}_{0,0,2}$, $\mathbf{W}_{*,*,i} \succeq \mathbf{0}, \quad \forall i \in \{1,2\}.$

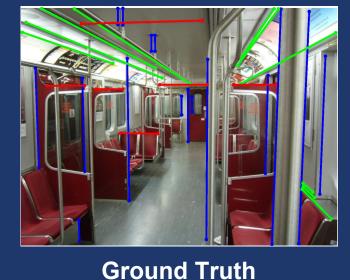
Iterative Solver

$\overset{\mathrm{min}}{\omega}$	$oldsymbol{\omega}^ op \mathbf{C}oldsymbol{\omega}$	
s.t.	$oldsymbol{\omega}_0oldsymbol{\omega}_0^ op = \sum_{i=1}^4 oldsymbol{\omega}_0oldsymbol{\omega}_{i,j}^ op$	$, j=1,\ldots,m,$
	$oldsymbol{\omega}_0oldsymbol{\omega}_{i,j}^{ op}=oldsymbol{\omega}_{i,j}oldsymbol{\omega}_{i,j}^{ op},$	$egin{cases} i=1,\ldots,4\ j=1,\ldots,m \end{cases}$,
	$\{oldsymbol{\omega}_0\}_1^ op \{oldsymbol{\omega}_0\}_1 = 1,$	$\{\boldsymbol{\omega}_0\}_2^{\top}\{\boldsymbol{\omega}_0\}_2 = 1,$
	$\{\boldsymbol{\omega}_0\}_3^{ op}\{\boldsymbol{\omega}_0\}_3=1,$	$\{oldsymbol{\omega}_0\}_1^ op\{oldsymbol{\omega}_0\}_2=0,$
	$\{oldsymbol{\omega}_0\}_1^ op\{oldsymbol{\omega}_0\}_3=0,$	$\{oldsymbol{\omega}_0\}_2^ op\{oldsymbol{\omega}_0\}_3=0.$

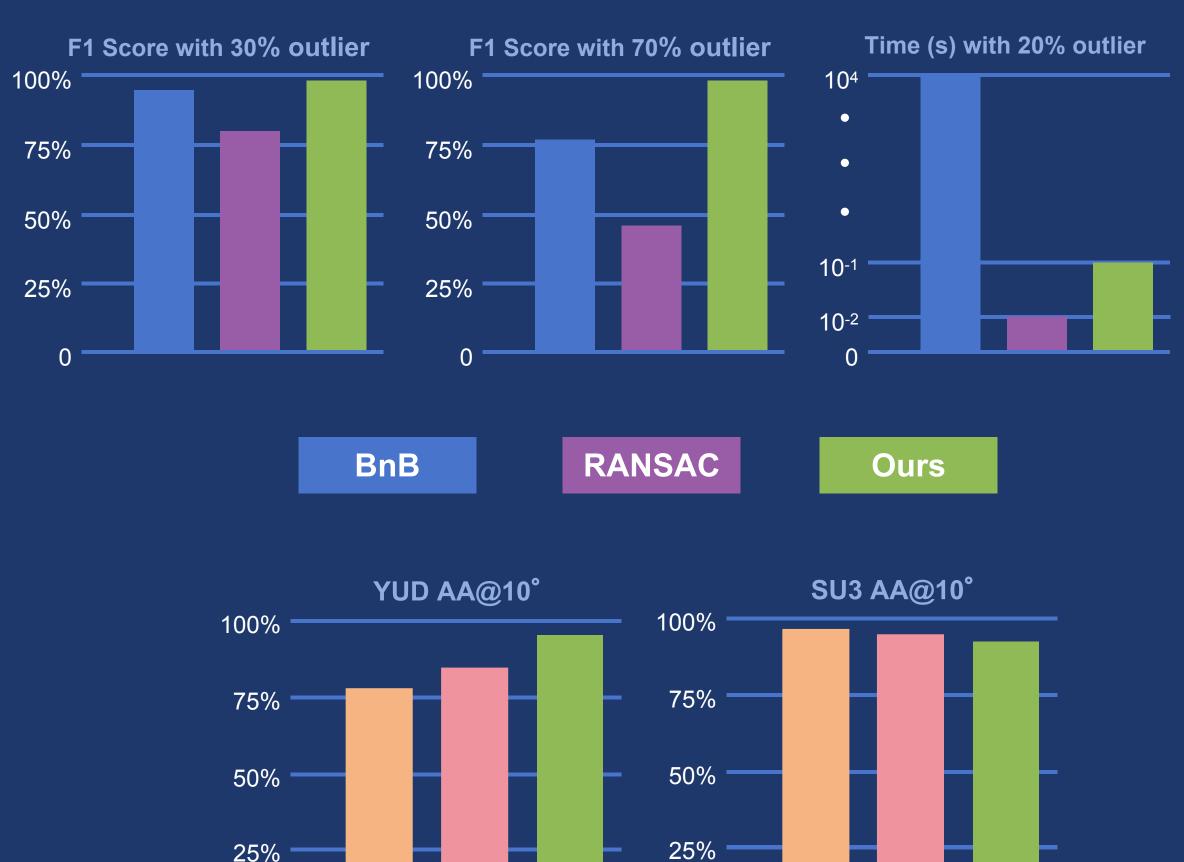
$$\begin{split} \min_{\mathbf{W}} & \operatorname{trace}(\mathbf{CW}) \\ \text{s.t.} & \mathbf{W}_{0,0} = \sum_{i=1}^{4} \mathbf{W}_{0,4(j-1)+i}, \quad j = 1, \dots, m, \\ & \mathbf{W}_{0,k} = \mathbf{W}_{k,k}, \quad k = 1, \dots, 4m, \\ & \operatorname{trace}(\{\mathbf{W}_{0,0}\}_{i,j}) = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases} \quad \forall i, j \in \{1, 2, 3\} \\ & \mathbf{W} \succeq \mathbf{0}, \end{cases} \\ \end{split}$$

$$\begin{aligned} & \mathbf{W} \succeq \mathbf{0}, \end{aligned}$$
(Full SDP Problem)

F1-score↑ Consistency error



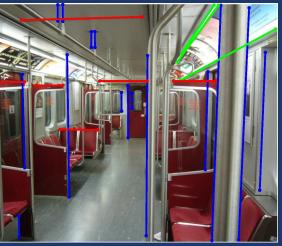
F1-score Consistency error



25%

Experiment

85.71%, 1.01 pix.



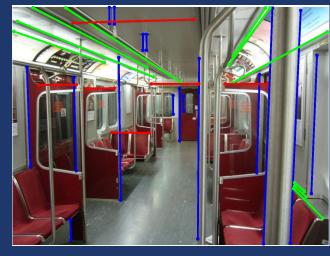
RANSAC

90.08%, 0.45 pix.

64.29% 2.19 pix.

87.60%, 0.52 pix

100% 0.41 pix



Ours

100% 0.01 pix.

PARSA NeurVPS

Ours