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 Motivation

• A “soft” association scheme, realized via the proposed truncated multi-
selection error, for joint estimation of VPs’ location and line-VP association.
• Introducing convex relaxation to reformulate the intermediate QCQP form 
of the primal problem as a convex SDP problem.
• An iterative solver, GlobustVP, that solves each VP subproblem 
independently (corresponding to a sub-block of the full SDP problem), 
achieving global optimality under mild conditions.
• Extensive evaluations on both synthetic and real data demonstrate that 
our method achieves superior accuracy and robustness, while being on 
par with prior methods in terms of efficiency.
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