GlobalPointer: Large-Scale Plane Adjustment with Bi-Convex Relaxation TarR Bl Il

Bangyan Liao*, Zhenjun Zhao*, Lu Chen, Haoang Li, Daniel Cremers, Peidong Liu C \
bangyan101.github.io/GlobalPointer

DREAME

M I LANDO
202 4

Problem: Plane Adjustment Methodology 2: GlobalPointer Experiments: Real Dataset
- . 2 2 2F :
: a = min ( : ) ‘ sy, = min (,) ' l 1 11 — 11 = ‘ IBALM2
: . — A =1 =1 8 0r 1 07 o 1 OF I —_
- () =1 © . | af L al ] IE
- (.) 1 . 2f { 2f 2 - IESO-BFGS
()= (. )| PA (Point-to-Plane Error) o ()= (.) £ | | | — = = _
=1 —1 (<))
Pose-Only QCQP () Plane-Only QCQP £ |l | | | IESO-FuII
©
l _____GlobalPointer P -
o= - — = DA - GlobalPointer (Ours)
Plane-Only
4r 1 4 1 4f :
SDP .
Rounding to get % 2l |2t 8 ) 2| hd o GlobalPointer++ (Ours)
B _ Pose-Only SDP pose variables | B _ £ o i g i < e
= min () ) = min @) § 2 2] 2/ | IPA-DecoupIed
: = : : = - Rounding to get e 4| = e il - o — i - — '
L min ) min . ()= T (,) plane variables ()= () T 0, =0.05° o, =0.001m 0, =25° 0, =0.5m Random Initialization
R S . ( )= . :1 e Pose-Only . _ | |
=1..., : 0, . — 0, 0, redundant rotation constraints . SDP - —
=1,.... _ ’ Plane Only SDP U L Accuracy comparisons on the real dataset under varying pose initialization noise levels.
QCQP (Primal) SDP (Primal) SDP (Dual)
‘o“ - L] [ ] . [ ]
| s Methodology 3: GlobalPointer++ Experiments: Synthetic Dataset
Equivalent x ” Lagrange Dual GlobalPointer (Ours) BALM2 w« ____ ESO-Full  PA-Full .
Re Lagrange Dual » a0 . a0l
min ( ) : : 18 12 » ®  Relative time
The convex relaxation technique serves as a general tool to T 16 20 10 30 complexity
( )=, reformulate the original non-convex QCQP problem into a new — min — + T 4+ - 14 | 8 »0| 1 & : .
o . IR 20 o comparisons against
0} ()=1, convex SDP problem. Although relaxation is applied, researchers 50 1 —1 12 ) 200 I 4
=1... have found that strong duality properties still hold for many () _q Y ‘ 10! | pliznies el plekizs:
problems. L g 0.8 | | | | | | , , . Time complexity is
QCQP (Trace FOrm) _ o bmlp ?ot .?.:. o4o 10 Esg-Bng 40 1;A_D2;cou3oled 40 measured as the
= nily (,) obalPointerze (OLre) .. 40 3 5 »  multiple of the
40 | 2 40 zz 30 407 6 optimization time
PA (Plane-to-Plane Error) ol 18 o . * o] s relative to the initial
Contribution -~ 5 . ol * sefting,
- . . . . ) T i T - 10
® A novel optimization strategy: Bi-Convex Relaxation , = min — + T+ - , = min - + T = 10 12 10 s 10 s 10 2
combines the advantages of both alternating minimization and convex ==l =1 =1 - 1 0 1D .
relaxation techniques - min - L =1 | o r - *
® Two algorithmic variants: GlobalPointer and GlobalPointer++ L4 o = | g [ AR
depend on point-to-plane and plane-to-plane errors, respectively . = = | | - | - .EF
® Extensive synthetic and real experimental evaluations demonstrate Pose-Only Closed-Form Solver Plane-Only Closed-Form Solver " L I I ' Accuracy
* linear time complexity 2f - — .ESO'BFGS comparisons
* robustness to poor initialization £ Ll - ;= == g ==m == [Jesorun under varying
- similar accuracy as prior methods. S ° . |l | | point cloud noise
Plane-Only Closed- = . |7 ' i ' .GIobaIPointer (ours) levels and pose
Form Solver Bl _ om L ' 'z'l _ L ) [l A ' initialization noise
" g y Y : ] GlobalPointer++ (Ou )
Methodology 1: Bi-convex Relaxation | ] .. I A Y I | £ - [Wleorarointers ours) levels
® decouple the original complex formulation into two sub-problems Pose-Only Closed- | S | | 1 = - == [lleanecoupied
® reformulate each problem using convex relaxation technique Form Solver = : | I I I af I | .PA-FuII
® solve each problem alternately until the overall problem converges 2l W= |, Sy - -
Op = 5° o, =0.1m Op = 25° o, =0.5m Op = 50° o, =1m Random Initialization




