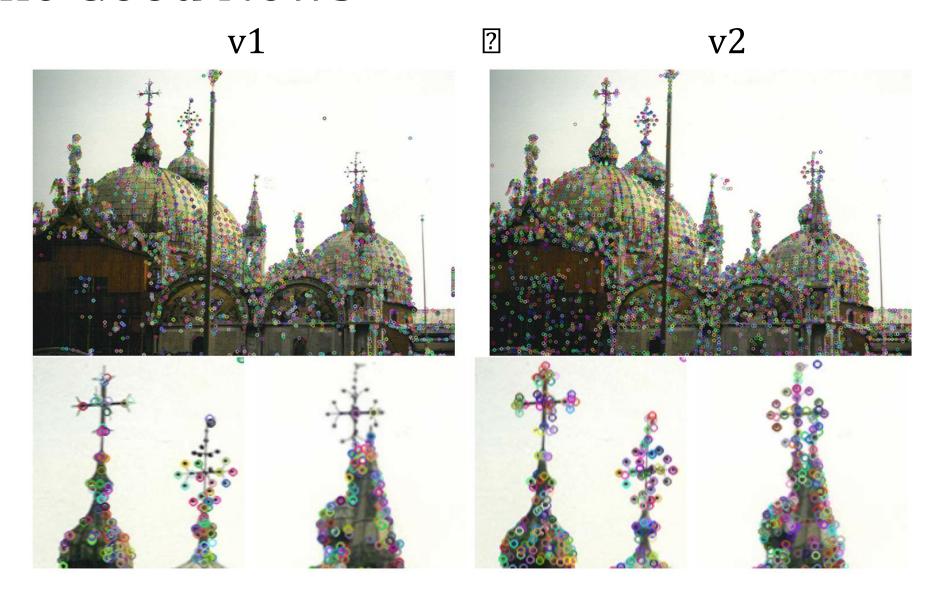
DeDoDe v2: Analyzing and Improving the DeDoDe Keypoint Detector

Johan Edstedt CVL, Linköping University

Georg Bökman
Chalmers University of Technology



Zhenjun Zhao
Chinese University of Hong Kong
Texas A&M University

Background: 30 Second Intro to DeDoDe v1

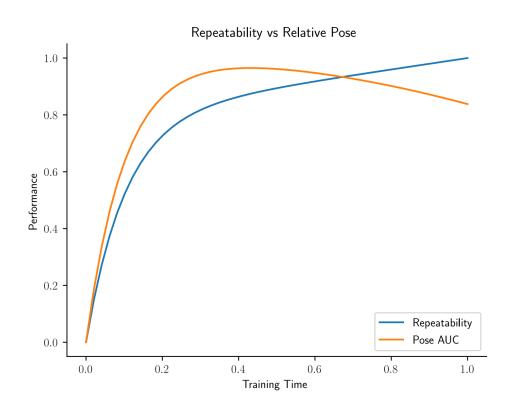
- DeDoDe v1 is a keypoint detector
- It's partially trained to detect SIFT detections that survive SfM
 - I.e. 2D detections that are connected to a 3D track
 - This is called the "detection prior"
- It's also trained to maximize self-consistency
 - Done by cross-entropy between single-view logits, and top-k 2-view logits
- It's regularized to spread the detections uniformly over MVS depth

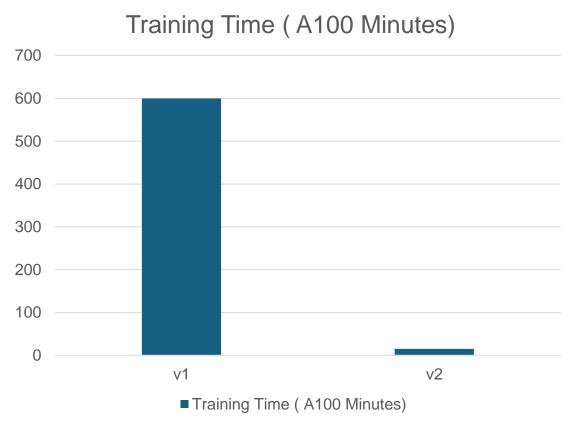
The Good News

The Good News

- We made some improvements to DeDoDe:
 - Quantitively:

Mega1500


Method ↓	$\mathrm{AUC} \rightarrow$	@5°	@10°	$@20^{\circ}$
SuperPoint [9] CVPRW'18		31.7	46.8	60.1
DISK [30] NeurIps'20		36.7	52.9	65.9
ALIKED [34] TIM'23		41.9	58.4	71.7
SiLK [14] 1CCV'23		39.9	55.1	66.9
DeDoDe v1-L	— v1-B [12] 3DV'24	49.4	65.5	77.7
DeDoDe v2-L — v1-B		52.5	67.4	78.7
DeDoDe C4-L	— C4-B [7] CVPR'24	51	67	79
DeDoDe v2 -L — C4-B		52.6	67.9	79.5
DeDoDe v1-L	— v1-G [12] 3DV'24	52.8	69.7	82.0
DeDoDe v2 -L — v1-G		54.6	70.7	82.4
DeDoDe v1-L	— RoMa [13] cvpr'24	55.1	71.6	83.5
DeDoDe v2 -L	— RoMa	57.6	73.3	84.4

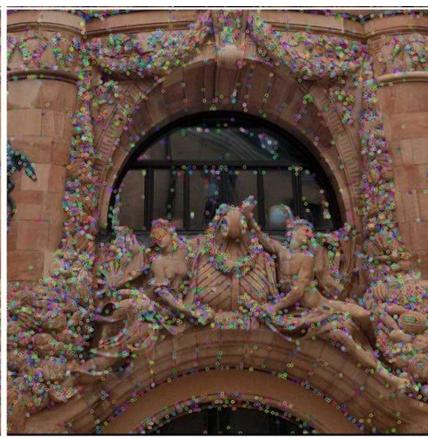

IMC22

Method \downarrow mAA \rightarrow	@10
DISK [30] Neurips'20 ALIKED [34] IEEE-TIM'23 SiLK [14] ICCV'23	64.8 64.9 68.5
DeDoDe v1-L — v1-B [12] 3DV'24	72.9
DeDoDe v2-L — v1-B	74.7
DeDoDe v1-L — v1-G [12] 3DV'24	75.8
DeDoDe v2-L — v1-G	78.3

What's Different?

- Significantly shorter training time
 - Prevents overfitting to objective

DISK VS DeDoDe v1 VS DeDoDe v2


 DISK not repeatable, but well distributed

• DDD v1 repeatable, not well distributed

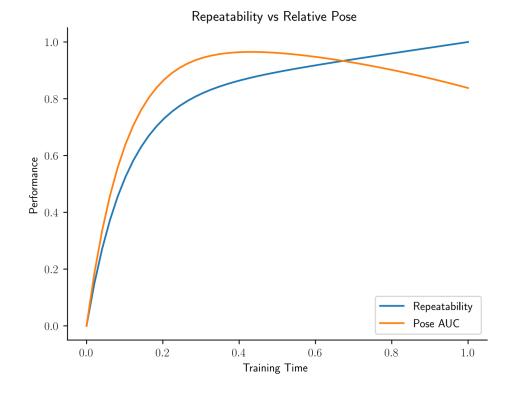
DDD v2
 repeatable, ~well
 distributed

What's Different?

Traintime NMS

- NMS on targets during training
- Not during inference (still degrades performance)
- Similar things of course exist in previous work
 - See e.g. peakiness loss in R2D2

What's Different?

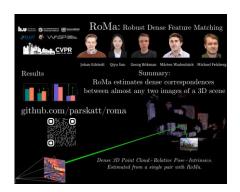

- Minor improvements:
 - Big Rotation Aug
 - Already in Steerers
 - Helps with SO2 invariance
 - Top-k per image instead of per-batch during training
 - Actually this is what is described in v1, but code doesn't do it...
 - Prevents net from ignoring difficult images

What didn't help?

- A bunch of things we tried with no effect:
 - Post-hoc diversity
 - I.e. trying to modify logits to give better spread
 - Modifying the "detection prior"
 - e.g. the weight (incl. annealing it over training), the standard dev,
 - Modifying the k in top-k
 - Changing the regularizer
 - E.g. to completely uniform, or removing it, or changing the loss weight
 - Learning rate
 - 10^-4 confirmed best learning rate
 - Resolution
 - Investigated lower,higher
 - Also investigated if aspect ratio matters
 - Spoiler: It doesn't
 - NMS during inference
 - Still doesn't help us
 - Might not be good in general for "SIFT"y detectors

The Bad News & Some Hope

- Probably repeatability is not such a good metric
 - Needs to be pose, with a good RANSAC
 - Some work in this direction already exists please try it for detectors!


Final Slide

- Weights are in github.com/parskatt/dedode,
- or you can use kornia

```
>>> dedode = DeDoDe.from_pretrained(detector_weights="L-C4-v2", descriptor_weights="B-upright[]
>>> images = torch.randn(1, 3, 256, 256)
>>> keypoints, scores = dedode.detect(images)
>>> descriptions = dedode.describe(images, keypoints = keypoints)
>>> keypoints, scores, features = dedode(images) # alternatively do both
```

- Also heard it was useful for one of the imc24 teams, happy to hear it \odot
- If you want to get in touch, dm me @ twitter.com/Parskatt
 - Or open an issue and complain about my code, or other stuff I messed up

Check out the poster for RoMa!

10:30 - 12:00 Poster Session 5 & Exhibit Hall (Arch 4A-E)

RoMa: Robust Dense Feature Matching, Johan Edstedt, Qiyu Sun, Georg Bökman, Mårten Wadenbäck, Michael Felsberg

FRIDAY, JUNE 21

And the Oral+Poster for Steerers!

13:00 - 14:30 Orals 2C: 3D from Multiview and Sensors, (Summit Flex Hall C)

Steerers: A Framework for Rotation Equivariant Keypoint Descriptors, *Georg Bökman, Johan Edstedt, Michael Felsberg, Fredrik Kahl*

WEDNESDAY, JUNE 19

• A keypoint detector detects.

• A keypoint detector detects.
The points that it detects are called detections.

- A keypoint detector detects.
 The points that it detects are called detections.
- A keypoint descriptor describes.

- A keypoint detector detects.
 The points that it detects are called detections.
- A keypoint descriptor describes.
 The points that it describes are called descriptions.

- A keypoint detector detects.
 The points that it detects are called detections.
- A keypoint descriptor describes.
 The points that it describes are called descriptions.
 - Note that people sometimes misspell these as "descriptors".

Final Slide (copy 3) (final)

- Will be working on matching again this autumn, looking for group
 - Let me know if you're interested in collaborating